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Abstract-In this study, the Modified Mapping Collocation method is employed to analyse the
response of finite composite laminates with multiple circular holes under appropriate material and
geometric symmetry conditions. In the case ofa laminate with a single hole, the analysis is capable of
accommodating the direct imposition of traction conditions, as well as the displacement constraints,
without requiring any symmetry conditions. The results presented in this study are in agreement
with existing solutions. The results also illustrate the effect of finite boundaries and their relative
position in relation to the holes on the stress concentrations.

1. INTRODUCTION

The application of composite materials in primary aircraft structures has led to extensive
research and development, much of which has been aimed at developing an understanding
of the sensitivity of composite laminates to the presence of hole(s). In order to better
understand the complex behavior of such structures, experimental investigations into the
failure of composite laminates with holes are still continuing (Poon, 1991). Along with the
experimental efforts, analytical modeling of the problem has attracted the attention of
numerous researchers, especially in the case of holes subjected to bearing load due to
fasteners.

Prior analytical investigations employed a variety of techniques, ranging from approxi
mate solutions to comprehensive numerical methods. The finite element and boundary
collocation methods are the numerical techniques most commonly used to obtain the stress
distribution around a hole in a composite plate with finite geometry under tractions or
displacement constraints. Although the finite element method is useful for calculating
accurate results for a particular problem, it is not suitable for iterative design calculations
for optimizing laminate construction in the presence of holes. The Modified Mapping
Collocation (MMC) method (a variation of the boundary collocation method) introduced
by Bowie and Neal (1970) was a better alternative and was adopted by Oplinger and Gandhi
(1974), Ogonowski (1980) and Wilmarth (1982) to determine the stress field in a finite
geometry orthotropic laminate with a hole.

These prior investigations have a significant limitation in that they are incapable of
enforcing displacement constraints directly. Bowie (1974) recognized this shortcoming and
avoided it by inverting the ,displacement constraint to a corresponding average traction
along the boundary. This inversion results in the imposition of tractions and the treatment
of the displacement constraint as an unknown. Recently, Cheong and Hong (1989)
employed this approach to investigate the effect of grip conditions on an orthotropic finite
plate containing a circular hole with edge cracks. Although this indirect way of imposing
displacement constraints yields acceptable results, it limits the applicability of the MMC
method to the investigation of various other problems involving symmetry and mixed
boundary conditions.

Recently, Madenci and IIeri (1991) re-examined the MMC method and presented a
procedure for directly applying the traction conditions, as well as the displacement con
straints and combinations thereof, within the framework of plane problems of anisotropic
elasticity. The analysis presented herein to investigate the response of composite laminates
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with multiple holes under the appropriate symmetry conditions is a result of this improve
ment.

A summary of the complex variable formulation and the treatment of the resulting
integration constants is presented in Section 2, along with a description of the numerical
solution method for direct application of various boundary conditions. The numerical
results for a finite geometry composite laminate with a single hole, two holes, and four
holes subjected to uniform loading at the edges are given in Section 3.

2. MATHEMATICAL FORMULATION AND SOLUTION

Under plane stress assumptions, Lekhnitskii (1968) developed a solution procedure
with two analytic functions, <l>1(ZI) and <l>2(Z2), satisfying the equations of equilibrium and
compatibility in Cartesian coordinates (x, y) for anisotropic laminates. The variables Z I and
Z2 are complex and are given by Zj = x+fljY and Z2 = X+fl2Y' The complex parameters fll
and fl2 are the roots of the characteristic equation derived by Lekhnitskii,

in which aij (i, j = 1,2,6) are the compliance coefficients of a laminate.
The stress and displacement components can be expressed as

au = 2 &i.e [fli<l>'j(zj) +fl~<I>;(Z2)],

ayy = 2 9l.e [<I>'I(ZI) + <1>'2 (Z2)]'

axy = -2 &i.e [fll<l>'I(Zj) + fl2<1>'2 (z 2)],

U, = 2 &i.e [P I<I>j(ZI)+P2<1>2(Z2)] -WY+U~,

Uy = 2 9l.e [q l<l>I(ZI)+q2<1>2(Z2)] +wx+u?,

where Pk and qk (k = 1,2) are given by

(1)

(2)

(3)

and the prime denotes differentiation with respect to the corresponding argument. The
rigid-body rotation and displacements are denoted by w and u~ and u;, respectively. The
components of resultant forces, FAs) and Fy(s), can be expressed in terms of the traction
components Xn and Yn , per unit thickness, acting along the (s - so) arc of the boundary Be
and Bj of the laminate (Fig. I):

Fig. I. Finite anisotropic laminate with a hole.
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FAs) = (s Xnds,
Jo

Fy(s) = (s Ynds.
Jo
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(4)

The parameter So indicates an arbitrary point (xo,Yo) on the boundary, and s is an arc
length parameter measured in the counterclockwise direction from So.

The components of the resultant forces, Fx and Fy , in terms of the analytic functions,
become

±F«s) = 29le[/lI<l>I(ZI)+/l2<1>2(Z2)]-29le [fll<l>I(Zn+/l2<1>2(Zm,

=FFy(s) = 29le [<I>I(ZI)+<I>2(Z2)]-29le[<I>I(Zn+<I>2(Zm. (5)

Upper and lower signs refer to the exterior and interior boundaries, respectively, and
z~ = XO+/lIYO and z~ = XO+/l2YO' The second terms in eqns (5) correspond to the complex
integration constants recognized by Bowie (1974) as the source of the inability to enforce
displacement constraints directly. These terms (integration constants), which are dependent
on the geometry and loading conditions, are retained in this formulation as part of the
solution procedure. Determination of the stress distribution in an elastic anisotropic plate
requires the explicit form of the analytic functions <l>1(ZI) and <l>2(Z2) such that the specified
boundary conditions are satisfied.

The solution procedure begins with the assumption that the analytic functions for
<l>l(~l) and <l>2(~2) are in the form of infinite series:

00

<l>l(~l) = ocoln ~l + L (oc_n~ln+ocn~n,
n~ I

00

<l>2(~2) = poln ~2+ L (P_n~2n+Pn~2),
n=l

(6)

where OCi and Pi are unknown complex coefficients determined by enforcing the boundary
conditions. As indicated by Lekhnitskii (1968), the logarithmic terms drop out if the force
resultants on the interior boundary are zero. The series expansions for <1>1 and <1>2 are
considered in mapped coordinates ~ I and ~ 2, rather than Z I and Z 2, in order to improve
convergence. The mapping functions, ~ 1 and ~ 2, given by Lekhnitskii are employed :t

~ _ Zl ±Jzi-a
2
-/lib

2

I - a-~'/llb '

~ _ Z2±Jz~-a2-/l~b2
2 - a-~'/l2b '

(7)

where i = J=l and a and b are the major and minor axes of an elliptical hole in a finite
anisotropic laminate (Fig. 1).

In the series expansions for <I> 1(~I) and <1>2 (~2)' the logarithmic terms are multi-valued;
in order to ensure single-valued displacement components, the following conditions must
be imposed:

t The sign of the square root terms in the mapping functions is chosen such that the internal boundary is
mapped to unit circles. Note that these functions are analytic and hence the mappings are conformal.
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(8)

It is implicit in the equations that the rigid-body translations, u~ and u~l, are zero. The rigid
body rotation, w, of an infinitesimal element located at (x,y) in the laminate must also
vanish, i.e.

OUx OUy
w=---=Oax oy .

This results in the enforcement of the following condition:

The solution is obtained by considering finite terms in the series as shown below:

N

<I>I(~I) = iXoln ~l + L (iX_n~ln+iXn~n,
n= 1

N

<I>2(~2) = poln ~2+ L (P_n~2n+Pn~2).
n= 1

(9)

(10)

(11)

In order to determine the finite number (4N+ 2) of unknown coefficients in the series given
by eqn (11), M number of collocation points on the boundary are selected for imposing the
boundary conditions.t The resulting overdetermined algebraic equations are solved by
means of the lest squares procedure as introduced by Newmann (1971). Once the coefficients
are determined, the stresses and displacements can be calculated using eqn (2).

3. NUMERICAL RESULTS

This study presents results for three different problems. The first problem (see insert
in Fig. 3) involves a finite anisotropic laminate with a circular hole subjected to uniform
tractions. The second and third problems (see inserts in Figs 5 and 6) involve a finite
specially orthotropic laminate with two and four circular holes, respectively, under uniform
tractions.t The circular holes present in each of these configurations are subjected to
traction-free conditions; this is not due to any restrictions of the analysis presented herein.

To ensure the accuracy of the numerical results, the number of positive and negative
terms, N, in the truncated series for <I>l(~ 1) and <I>2(~2) is chosen to be 10, and the numbers
of collocation points on the exterior and interior boundaries are 44 and 52, respectively.
These numerical values were established through a convergence study. The location and
numbering of the collocation points are illustrated in Fig. 2.

Each lamina considered in this study is composed of homogeneous, elastic and
orthotropic material with the following properties representative of graphite-epoxy:
EL = 19.0 X 106 psi, ET = 1.9 X 106 psi, GLT = 0.9 X 106 psi, and VLT = 0.3, where EL and ET

are Young's moduli, GLT is the shear modulus, VLT is Poisson's ratio, and subcripts Land
T indicate the longitudinal and transverse directions relative to the fibers in the lamina. The
results are independent of the thickness, t, of each lamina due to normalization of the
compliance coefficients, aij, with respect to the actual laminate thickness.

t The number of collocation points, M, is usually much larger than the number of unknown coefficients in
the series.

t In the case of specially orthotropic laminates, the principal axes of material symmetry coincide with the
reference coordinate system.
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Fig. 2. Collocation points associated with the exterior and interior boundaries of a finite geometry

laminate.
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Fig. 3. Variation of normalized stress along y-axis in an anisotropic laminate with a circular hole.
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Fig. 6. Effect of distances between four holes on stress concentration.

Problem 1 : Anisotropic laminate with a circular hole
In this case, the laminate with layup (0°s/ ±452/90°), is subjected to uniform tractions,

CTo. The boundary conditions associated with the collocation points that are shown in Fig.
2 can be expressed as :

Uniform tractions

Fx = CTo(s,-Yo), 1 ~ r ~ K],

Fx = CTo(H-h), K, ~ r ~ K 2,

Fx = CTo(s,-Yo), K 2 ~ r ~ K 3,

Fx = -CToh, K 3 ~ r ~ K and r = 1,

-Fy = 0, I~r~K,

-Fx = 0, K+I ~ r ~ M,

Fy = 0, K+I ~ r ~ M,

where s, denotes the location of the collocation point, and the subscript r indicates the index
of the collocation points on the exterior and interior boundaries. The geometric parameters
hand H are illustrated in Fig. 2. The indices of the collocation points are chosen as K I = 12,
K 2 = 23, K 3 = 34, K = 44 and M = 96.

The normalized maximum stress, CTxAO,y)/CTo, is calculated for both finite and infinite
anisotropic laminates.t These results are depicted in Fig. 3. The effect of finite boundaries
on the stress concentration in anisotropic and isotropic materials is presented in Fig. 4. In

t A laminate with large dimensions is considered when the results are compared with the existing infinite
plate solution.
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Table I. Normalized stress from a hole boundary in an infinite
orthotropic laminate

yla

1.0
1.2
1.4
1.6
1.8
2.0

Present analysis

6.871
2.078
1.534
1.311
1.163
1.123

a,,(O,Y)/ao
Exact solution

(Konish and Whitney, 1975)

6.863
2.070
1.530
1.310
1.160
1.120

the case of an infinite orthotropic laminate, the results tabulated in Table I from the present
study and those of the closed-form solution given by Konish and Whitney (1975) almost
coincide with each other. (The lamina properties of EL = 20.449 X 106 psi, ET = 1.3691 X 106

psi, GLT = 7.5216 X 105 psi, and VLT = 0.31 were used to generate Table I for the purpose
of comparison.)

Problem 2: Orthotropic laminate with two circular holes
Due to the presence of symmetry in geometry, material and loading, only half the

laminate with layup (0°8) is considered. As shown by the inserts in Fig. 5, configurations
involving two holes either in series or parallel are investigated. For each case, the boundary
conditions associated with the collocation points are specified as:

Two holes in series

F, = O'o(S,-Yo), I ~ r ~ K"

F, =O'o(H-h), K 1 ~ r ~ K 2,

ux = 0, K 2 ~ r ~ K 3,

F, = -O'oh, K 3 ~ r ~ K and r = 1,

-Fy = 0, 1 ~ r ~ K,

-F, = 0, K+I ~ r ~ M,

Fv = 0, K+I ~ r ~ M.

Table 2. Normalized maximum stresses in an infinite quasi
isotropic laminate

a. With two holes in series

a,,(O, +- a)/a 0

/Ia Present analysis Peterson (1974)

1.5
2.0
3.0
5.0
8.0

2.629
2.705
2.822
2.930
2.972

2.623
2.703
2.825
2.927
2.970

b. With two holes in parallel

a,,(O, -a)/ao
hla Present analysis Peterson (1974)

1.5
2.0
3.0
5.0
8.0

3.267
3.061
3.002
2.999
2.999

3.264
3.060
3.002
2.999
2.999



Analysis of finite composite laminates with holes

Table 3. Normalized maximum stresses in an infinite quasi
isotropic laminate with four holes

833

h=l

(I-a)/l

U,,(O, -a)/uo

Present analysis Peterson (1974)

0.15
0.30
0.40
0.70
0.90
1.00

Two holes in parallel

7.40
4.25
3.50
3.05
3.00
3.00

7.45
4.26
3.55
3.05
3.00
3.00

F t = 1T0(s,-Yo), 1 ~ r ~ Kj,

F t = 1T0(H-h), K] ~ r ~ K 2 ,

Fx = 1T0(s,-yo), K 2 ~ r ~ K 3,

-Fv = 0, 1 ~ r ~ K 3,

uy = 0, K 3 ~ r ~ K and r = 1,

Fx = -lToh, K 3 ~ r ~ K and r = 1,

-Fx = 0, K+l ~ r ~ M,

Fy = 0, K+l ~ r~M.

The variation of normalized maximum stress, ITxAO, ±a)/IT 0, for these configurations
is presented in Fig. 5. The infinite quasi-isotropic laminate with the same geometric con
figurations is also considered in order to establish the validity of the present analysis results.
As tabulated in Table 2, these results agree with those given by Peterson (1974) for an
infinite quasi-isotropic plate.

Problem 3: Orthotropic laminate with four circular holes
The geometry and loading conditions of this case are illustrated in Fig. 6. Since the

laminate is specially orthotropic with layup (0°8), it is sufficient to consider only a quarter
of the laminate. The boundary conditions imposed on the collocation points are:

Fx = 1T0(s,-yo), 1 ~ r ~ Kj,

Fx = 1T0(H-h), K] ~ r ~ K 2 ,

UX = 0, K 2 ~ r ~ K 3,

uy = 0, K 3 ~ r ~ K and r = 1,

-Fy = 0, 1 ~ r ~ K,

-Fx = 0, K+l ~r~ M,

Fy = 0, K+l ~ r ~ M.

The normalized maximum stresses, ITxAO, -a)/lTo, are calculated for an infinite quasi
isotropic laminate. These results and their comparison to those given by Peterson (1974)
are presented in Table 3. The effect of finite geometry and the position of the holes on the
stress concentration is shown in Fig. 6.
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4. CONCLUSIONS

The present analysis focuses on the assessment of the stress concentration in finite
composite laminates with holes. The problems considered in this study were chosen so as
to demonstrate the accuracy and versatility of the MMC method. As observed in Tables
1-3, the results compare favorably with known solutions. The results also illustrate the
effect of finite boundaries and their relative position in relation to the holes on the stress
concentrations.

A significant contribution of this study is that it allows for tractions, displacement
constraints, and mixed boundary conditions. This approach can be applied to other prob
lems with more complex geometric and loading conditions. For example, it may be well
suited for the determination of stress distributions around a hole with a fastener in a finite
composite laminate.
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